Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Langmuir ; 40(13): 6878-6883, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501274

ABSTRACT

Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Molecular Structure , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Glycerylphosphorylcholine
3.
Sci Rep ; 14(1): 5048, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424199

ABSTRACT

The stromal cell-derived factor 1 (SDF-1)/chemokine receptor type 4 (CXCR4) axis plays a key role in alveolar bone metabolism during orthodontic tooth movement (OTM). Herein, the effects of the SDF-1/CXCR4 axis on the regional acceleratory phenomenon (RAP) in OTM velocity and on changes in the surrounding periodontium after adjacent tooth extraction in rats were investigated. Six-week-old male Wistar/ST rats underwent left maxillary first molar (M1) extraction and mesial OTM of the left maxillary second molar (M2) with a 10-g force closed-coil spring. Phosphate-buffered saline, immunoglobulin G (IgG) isotype control antibody, or anti-SDF-1 neutralizing monoclonal antibody were injected at the M1 and M2 interproximal areas (10 µg/0.1 mL) for the first three days. Analyses were performed after 1, 3, and 7 days (n = 7). The results demonstrated a significant increase in SDF-1 expression from day 1, which was effectively blocked via anti-SDF-1 neutralizing monoclonal antibody injection. On day 3, the M2 OTM distance and the number of positively stained osteoclasts significantly reduced alongside a reduction in inflammatory markers in the experimental group. Our results demonstrated that serial local injection of the anti-SDF-1 neutralizing monoclonal antibody reduces M2 OTM, osteoclast accumulation, and localized inflammatory responses in an OTM model with tooth extraction-induced RAP.


Subject(s)
Chemokine CXCL12 , Tooth Movement Techniques , Animals , Male , Rats , Antibodies, Monoclonal/pharmacology , Chemokine CXCL12/metabolism , Osteoclasts/metabolism , Rats, Wistar , Tooth Extraction
4.
J Colloid Interface Sci ; 663: 329-335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402826

ABSTRACT

A benzoic acid (BA) disk was investigated as a novel self-propelled object whose driving force was the difference in surface tension. 4-Stearoyl amidobenzoic acid (SABA) was synthesized as an amphiphile to control the nature of motion based on intermolecular interactions between BA and SABA. The BA disk exhibited characteristic motion depending on the surface density of the SABA on the aqueous phase, that is, reciprocating motion as a one-dimensional motion and restricted and unrestricted motion as a two-dimensional motion. The trajectory of the reciprocating motion was determined by the initial direction of motion, and the boundary between an aqueous surface and the BA-SABA condensed molecular layer was used as the field's boundary. The presented results indicate that the characteristic nature of motion can be designed at the molecular level based on the intermolecular interactions between an energy-source molecule and an amphiphile.

5.
J Biol Chem ; 299(12): 105477, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981206

ABSTRACT

RNA polymerase II (RNAPII) transcribes DNA wrapped in the nucleosome by stepwise pausing, especially at nucleosomal superhelical locations -5 and -1 [SHL(-5) and SHL(-1), respectively]. In the present study, we performed cryo-electron microscopy analyses of RNAPII-nucleosome complexes paused at a major nucleosomal pausing site, SHL(-1). We determined two previously undetected structures, in which the transcribed DNA behind RNAPII is sharply kinked at the RNAPII exit tunnel and rewrapped around the nucleosomal histones in front of RNAPII by DNA looping. This DNA kink shifts the DNA orientation toward the nucleosome, and the transcribed DNA region interacts with basic amino acid residues of histones H2A, H2B, and H3 exposed by the RNAPII-mediated nucleosomal DNA peeling. The DNA loop structure was not observed in the presence of the transcription elongation factors Spt4/5 and Elf1. These RNAPII-nucleosome structures provide important information for understanding the functional relevance of DNA looping during transcription elongation in the nucleosome.


Subject(s)
Histones , Nucleosomes , RNA Polymerase II , Chromatin , Cryoelectron Microscopy , DNA/metabolism , Histones/metabolism , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/metabolism
7.
Phys Chem Chem Phys ; 25(20): 14546-14551, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191103

ABSTRACT

We have developed a self-propelled object, which is composed of a plastic cup and a camphor disk, on water to reflect its three-dimensional shape in the nature of motion. The self-propelled object, of which the driving force of motion is the difference in the surface tension, exhibited oscillatory motion between motion and rest. The period and the maximum speed of oscillatory motion increased and decreased depending on the height of the cup, h, respectively. Two types of diffusion coefficients were estimated based on the diffusion of camphor molecules which were indirectly visualized using 7-hydroxycoumarin. The experimental result on the period of oscillatory motion depending on h could be reproduced by the numerical calculation based on the diffusion of camphor molecules around the object and the diffusion coefficients which were experimentally estimated. The experimental results suggest that characteristic features of motion can be created based on the three-dimensional shape of the object.

8.
Micromachines (Basel) ; 14(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241650

ABSTRACT

In this study, we developed a comb-shaped microfluidic device that can efficiently trap and culture a single cell (bacterium). Conventional culture devices have difficulty in trapping a single bacterium and often use a centrifuge to push the bacterium into the channel. The device developed in this study can store bacteria in almost all growth channels using the flowing fluid. In addition, chemical replacement can be performed in a few seconds, making this device suitable for culture experiments with resistant bacteria. The storage efficiency of microbeads that mimic bacteria was significantly improved from 0.2% to 84%. We used simulations to investigate the pressure loss in the growth channel. The pressure in the growth channel of the conventional device was more than 1400 PaG, whereas that of the new device was less than 400 PaG. Our microfluidic device was easily fabricated by a soft microelectromechanical systems method. The device was highly versatile and can be applied to various bacteria, such as Salmonella enterica serovar Typhimurium and Staphylococcus aureus.

9.
J Bone Miner Metab ; 41(2): 171-181, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36859617

ABSTRACT

INTRODUCTION: Periostin, an extracellular matrix protein, plays an important role in osteogenesis and is also known to activate several signals that contribute to chondrogenesis. The absence of periostin in periostin knockout mice leads to several disorders such as craniosynostosis and periostitis. There are several splice variants with different roles in heart disease and myocardial infarction. However, little is known about each variant's role in chondrogenesis, followed by bone formation. Therefore, the aim of this study is to investigate the role of several variants in chondrogenesis differentiation and bone formation in the craniofacial region. Periostin splice variants included a full-length variant (Control), a variant lacking exon 17 (ΔEx17), a variant lacking exon 21 (ΔEx21), and another variant lacking both exon 17 and 21 ***(ΔEx17&21). MATERIALS AND METHODS: We used C56BL6/N mice (n = 6) for the wild type (Control)*** and the three variant type mice (n = 6 each) to identify the effect of each variant morphologically and histologically. Micro-computed tomography demonstrated a smaller craniofacial skeleton in ΔEx17s, ΔEx21s, and ΔEx17&21s compared to Controls, especially the mandibular bone. We, thus, focused on the mandibular condyle. RESULTS: The most distinctive histological observation was that each defected mouse appeared to have more hypertrophic chondrocytes than Controls. Real-time PCR demonstrated the differences among the group. Moreover, the lack of exon 17 or exon 21 in periostin leads to inadequate chondrocyte differentiation and presents in a diminutive craniofacial skeleton. DISCUSSION: Therefore, these findings suggested that each variant has a significant role in chondrocyte hypertrophy, leading to suppression of bone formation.


Subject(s)
Chondrocytes , Chondrogenesis , Animals , Mice , Bone and Bones , Cell Differentiation/genetics , Chondrocytes/metabolism , Chondrogenesis/genetics , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Mice, Knockout , Osteogenesis/genetics , X-Ray Microtomography
10.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835111

ABSTRACT

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription-quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1ß, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-ß1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation.


Subject(s)
Alveolar Bone Loss , NF-kappa B , Nanospheres , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Rats , Alveolar Bone Loss/drug therapy , Alveolar Process , Glycols , Inflammation/metabolism , Nanospheres/therapeutic use , NF-kappa B/chemistry , NF-kappa B/pharmacology , Oligodeoxyribonucleotides/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Rats, Wistar , X-Ray Microtomography
11.
Methods Mol Biol ; 2509: 195-208, 2022.
Article in English | MEDLINE | ID: mdl-35796965

ABSTRACT

In eukaryotic cells, genomic DNA is stored in the nucleus in a structure called chromatin. The nucleosome, the basic structural unit of chromatin consisting of DNA wound around a histone octamer, regulates access of transcription machinery to DNA. Nucleosome stability is thus tightly associated with gene expression. Recently, a class of non-coding RNAs was found to be directly associated with chromatin. Although these non-coding RNAs are reportedly important in genome regulation, the molecular mechanisms through which these RNAs act remain unclear. Here, we introduce a biochemical method to evaluate the effects of ncRNAs on nucleosome stability, using the breast cancer-associated ncRNA Eleanor2 as an example. This method is useful for assessing the effects of different RNAs on chromatin stability and conformation.


Subject(s)
Histones , Nucleosomes , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA/chemistry , Histones/metabolism , Nucleosomes/genetics , RNA, Untranslated/genetics
12.
Am J Orthod Dentofacial Orthop ; 162(2): 182-192, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35248418

ABSTRACT

INTRODUCTION: Chemokines play pivotal roles in orthodontic tooth movement (OTM) through osteoclast-mediated bone resorption, but the underlying mechanism remains unclear. We aimed to elucidate the effects of serial local vs systemic administration of the chemokine receptor CXCR4 antagonist AMD3100 on OTM. METHODS: The maxillary first molar (M1) of rats was moved mesially using a 10 g of force nickel-titanium coil spring. The injections were performed every other day with phosphate-buffered saline as a control, whereas local and systemic animals were injected with AMD3100 at the buccal palatal mucosa adjacent to M1 and subcutaneously, respectively. OTM distance and alveolar bone were examined by microcomputed tomography and histologic analysis. Osteoclast numbers were quantified using TRAP staining. Cathepsin K and stromal cell-derived factor-1 (SDF-1) were evaluated using immunohistochemistry. Reverse transcriptase polymerase chain reaction for cathepsin K, Runx2, SDF-1, CXCR4, RANKL, and OPG were also examined. RESULTS: OTM and osteoclast numbers were significantly decreased in the local and systemic groups compared with the control group, whereas there was no significant difference among the experimental groups. Local administration inhibited molar but not incisor movement. Trabecular thickness and trabecular spacing of the alveolar bone significantly increased, and trabecular number significantly decreased in the systemic group compared with the control group, whereas local injection also affected bone quality in the same tendency as a systemic injection. AMD3100 significantly downregulated the mRNA expression levels of cathepsin K, Runx2, SDF-1, RANKL, and RANKL/OPG ratio in both experimental groups. CONCLUSIONS: Local administration of AMD3100 can control initial OTM and diminish bone resorption processes during OTM via inhibition of the SDF-1/CXCR4 axis, similar to the systemic administration.


Subject(s)
Bone Resorption , Tooth Movement Techniques , Animals , Benzylamines , Cathepsin K/pharmacology , Core Binding Factor Alpha 1 Subunit , Cyclams , Osteoclasts , Rats , Receptors, CXCR4 , Tooth Movement Techniques/methods , X-Ray Microtomography
13.
J Periodontol ; 93(3): 458-470, 2022 03.
Article in English | MEDLINE | ID: mdl-34319612

ABSTRACT

BACKGROUND: Excessive inflammation in the periodontal tissue after tooth replantation can lead to inflammatory root resorption and interrupt periodontal tissue regeneration. We tested the hypothesis that nuclear factor-κB decoy oligodeoxynucleotide-loaded poly lactic-co-glycolic acid nanospheres (NF-PLGA) inhibit excessive inflammation and promote healing of periodontal tissue after replantation in rats. METHODS: The upper right incisors of rats were extracted, immersed in different specific solutions, and replanted. The rats were euthanized at 7, 14, and 28 days after replantation. Morphological evaluation with micro-CT and histological assessment with hematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP) staining was performed. Additionally, we examined the expression of interleukin (IL)-1ß, IL-6, transforming growth factor-ß1 (TGF-ß1), and fibroblast growth factor-2 (FGF-2) in the periodontal ligament (PDL) by performing immunohistological assessment. RESULTS: The NF-PLGA group showed significantly greater dental root thickness than the other experimental groups. Root resorption was not observed after the application of NF-PLGA on day 7. The application of NF-PLGA also resulted in a significantly lower number of TRAP-positive osteoclasts on days 7 and 14 after replantation. Significantly lower expression of IL-1ß and IL-6 and higher expression of TGF-ß1 and FGF-2 were observed under the application of NF-PLGA in the PDL. CONCLUSIONS: NF-PLGA promoted the healing process by inhibiting the initial excessive inflammatory response in the PDL, preventing root resorption, and promoting periodontal tissue regeneration. The findings also suggested that the PLGA nanospheres-mediated transfection of the decoy oligodeoxynucleotides can be useful for the clinical application of replanted tooth root surfaces.


Subject(s)
Nanospheres , Root Resorption , Animals , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/therapeutic use , Glycolates , Glycols , Inflammation , Interleukin-6 , NF-kappa B , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/therapeutic use , Periodontal Ligament , Rats , Root Resorption/prevention & control , Tooth Replantation/methods , Transforming Growth Factor beta1
14.
Front Physiol ; 12: 676270, 2021.
Article in English | MEDLINE | ID: mdl-34220541

ABSTRACT

Activation of the sympathoadrenal system is associated with sleep apnea-related symptoms and metabolic dysfunction induced by chronic intermittent hypoxia (IH). IH can induce hormonal imbalances and growth retardation of the craniofacial bones. However, the relationship between IH and ß2-adrenergic receptor signaling in the context of skeletal growth regulation is unclear. This study aimed to investigate the role of ß2-adrenergic receptors in IH-induced mandibular growth retardation and bone metabolic alterations. Male 7-week-old Sprague-Dawley rats were subjected to IH for 3 weeks. IH conditions were established using original customized hypoxic chambers; IH was induced at a rate of 20 cycles per hour (oxygen levels changed from 4 to 21% in one cycle) for 8 h per day during the 12 h "lights on" period. The rats received intraperitoneal administration of a ß2-adrenergic antagonist (butoxamine) or saline. To exclude dietary effects on general growth, the normoxic rats with saline, normoxic rats with butoxamine, and IH rats with butoxamine were subjected to food restriction to match the body weight gains between IH and other three groups. Body weight, heart rate, blood pressure, and plasma concentrations of leptin, serotonin, and growth hormone were measured. Bone growth and metabolism were evaluated using radiography, microcomputed tomography, and immunohistochemical staining. Plasma leptin levels were significantly increased, whereas that of serotonin and growth hormone were significantly decreased following IH exposure. Leptin levels recovered following butoxamine administration. Butoxamine rescued IH-induced mandibular growth retardation, with alterations in bone mineral density at the condylar head of the mandible. Immunohistochemical analysis revealed significantly lower expression levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the condylar head of IH-exposed rats. Conversely, recovery of RANKL expression was observed in IH-exposed rats administered with butoxamine. Collectively, our findings suggest that the activation of ß2-adrenergic receptors and leptin signaling during growth may be involved in IH-induced skeletal growth retardation of the mandible, which may be mediated by concomitant changes in RANKL expression at the growing condyle.

15.
Langmuir ; 37(23): 7039-7042, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34048652

ABSTRACT

The route selection of self-propelled filter papers impregnated with camphor for two-branched water channels was investigated. The two-branched water channel was composed of a stem channel and two branch channels, and the branch channels were connected to the stem channel at a junction. When a single camphor paper reached the junction from the stem channel, it selected one of the two routes equivalently. Three or five camphor papers which were placed on a stem channel exhibited either alternate or random route selection depending on the characteristic length between the leading and following papers, Lc. That is, the alternate route selection of the camphor papers for the two-branched water channels was observed at Lc ≤ 25 mm. By contrast, the alternate route selection was broken at Lc > 25 mm. The physicochemical meaning of the threshold value, Lth ∼ 26 mm, between the alternate and random route selections was discussed based on the experimental results. In addition, the distribution length of camphor molecules developed from the leading camphor paper and the change in the spatial gradient of surface tension around the junction supports the value of Lth. These results suggest that autonomous phenomena using inanimate self-propelled objects are important to understand collective motion in living organisms.

16.
EMBO J ; 40(5): e105671, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33463726

ABSTRACT

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cryoelectron Microscopy/methods , Kinetochores/metabolism , Nucleosomes/metabolism , Animals , Centromere/ultrastructure , Centromere Protein A/ultrastructure , Chickens , Chromosomal Proteins, Non-Histone/ultrastructure , Kinetochores/ultrastructure , Models, Molecular , Nucleosomes/ultrastructure , Phosphorylation , Protein Conformation
17.
Eur J Orthod ; 43(1): 94-103, 2021 01 29.
Article in English | MEDLINE | ID: mdl-32219305

ABSTRACT

OBJECTIVES: Chronic intermittent hypoxia (IH), a common state experienced in obstructive sleep apnoea (OSA), retards mandibular growth in adolescent rats. The aim of this study was to elucidate the differential effects of IH on mandibular growth in different growth stages. MATERIALS AND METHODS: Three-week-old (juvenile stage) and 7-week-old (adolescent stage) male Sprague-Dawley rats underwent IH for 3 weeks. Age-matched control rats were exposed to room air. Mandibular growth was evaluated by radiograph analysis, micro-computed tomography, real-time polymerase chain reaction and immunohistology. Tibial growth was evaluated as an index of systemic skeletal growth. RESULTS: IH had no significant impact on the general growth of either the juvenile or adolescent rats. However, it significantly decreased the total mandibular length and the posterior corpus length of the mandible in the adolescent rats and the anterior corpus length in the juvenile rats. IH also increased bone mineral density (BMD) of the condylar head in adolescent rats but did not affect the BMD of the tibia. Immunohistological analysis showed that the expression level of receptor activation of nuclear factor-κB ligand significantly decreased (in contrast to its messenger ribonucleicacid level) in the condylar head of adolescent rats with IH, while the number of osteoprotegerin-positive cells was comparable in the mandibles of adolescent IH rats and control rats. LIMITATIONS: The animal model could not simulate the pathological conditions of OSA completely and there were differences in bone growth between humans and rodents. CONCLUSIONS: These results suggest that the susceptibility of mandibular growth retardation to IH depends on the growth stage of the rats.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Animals , Hypoxia/complications , Male , Mandible/diagnostic imaging , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
18.
Sleep Breath ; 25(2): 677-684, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32766939

ABSTRACT

PURPOSE: Chronic intermittent hypoxia (IH) plays a pivotal role in the consequences of obstructive sleep apnea (OSA). It has been demonstrated that IH impairs nasomaxillary complex growth to reduce nasal airway cavity size in rodent models. Although turbinate dysfunction with inflammatory mucosal hypertrophy is related to OSA, the role of IH in turbinate hypertrophy with inflammation-driven fibrosis is unknown. Here, we aimed to clarify the pathogenesis of inflammatory mucosal hypertrophy and epithelial-mesenchymal transition (EMT) in the nasal turbinate under IH. METHODS: Seven-week-old male Sprague-Dawley rats were exposed to IH (4% O2 to 21% O2 with 0% CO2) at a rate of 20 cycles/h. RESULTS: Hypertrophy of the turbinate mucosa occurred after 3 weeks, with the turbinate mucosa of the experimental group becoming significantly thicker than in the control group. Immunostaining showed that IH increased the expression of TGFß and N-cadherin and decreased E-cadherin expression in the turbinate mucosa. Quantitative PCR analysis demonstrated that IH enhanced the expression of not only the inflammatory markers Tnf-a, Il-1b, and Nos2 but also the EMT markers Tgf-b1, Col1a1, and Postn. CONCLUSIONS: Collectively, these results suggest that IH induced turbinate hypertrophy via upregulation of gene expression related to inflammation and EMT in the nasal mucosa.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Hypertrophy/physiopathology , Hypoxia/physiopathology , Inflammation/physiopathology , Mucous Membrane/physiopathology , Turbinates/physiopathology , Up-Regulation/physiology , Animals , Humans , Male , Rats , Rats, Sprague-Dawley
19.
J Phys Chem B ; 124(26): 5525-5529, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32501008

ABSTRACT

We studied the self-propelled motion of a camphor disk placed on water developed with a nervonic acid molecular layer to investigate the dependence of types of motion on the properties of amphiphilic compounds. The surface pressure (Π) versus area (A) isotherm exhibited a transition point corresponding to a phase transition between the fluid (F) and fluid/condensed (F/C) phases of nervonic acid. The type of motion was determined by not only the surface pressure of the nervonic acid molecular layer but also the phase, either F or F/C. When the temperature of water was varied through the phase transition temperature Tp40 (∼23 °C), with an area of 40 Å2 per nervonic acid molecule in the molecular layer, no motion and oscillatory motion were observed reversibly above and below Tp40, respectively. Our results suggest that the features of camphor motion depend on not only the surface pressure but also the nature of the phase in the nervonic acid molecular layer.

20.
Commun Biol ; 3(1): 60, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047236

ABSTRACT

In the nucleus, genomic DNA is wrapped around histone octamers to form nucleosomes. In principle, nucleosomes are substantial barriers to transcriptional activities. Nuclear non-coding RNAs (ncRNAs) are proposed to function in chromatin conformation modulation and transcriptional regulation. However, it remains unclear how ncRNAs affect the nucleosome structure. Eleanors are clusters of ncRNAs that accumulate around the estrogen receptor-α (ESR1) gene locus in long-term estrogen deprivation (LTED) breast cancer cells, and markedly enhance the transcription of the ESR1 gene. Here we detected nucleosome depletion around the transcription site of Eleanor2, the most highly expressed Eleanor in the LTED cells. We found that the purified Eleanor2 RNA fragment drastically destabilized the nucleosome in vitro. This activity was also exerted by other ncRNAs, but not by poly(U) RNA or DNA. The RNA-mediated nucleosome destabilization may be a common feature among natural nuclear RNAs, and may function in transcription regulation in chromatin.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , RNA, Untranslated/genetics , Cell Line , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Genetic Loci , Histones/metabolism , Humans , In Situ Hybridization, Fluorescence , Nucleic Acid Conformation , Protein Stability , RNA, Untranslated/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...